Special idempotents and projections
نویسندگان
چکیده
We define, for any special matching of a finite graded poset, an idempotent, regressive and order preserving function. consider the monoid generated by such functions. call idempotent element this monoid. They are interval retracts. Some them realize kind parabolic map called projections. prove that, in Eulerian posets, image projection, its complement, induced subposets. In Coxeter group, all projections on right left quotients projections, some double too. extend our results to partial matchings.
منابع مشابه
extensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولFREE SEMIGROUPS AND IDEMPOTENTS IN T
The known theory for an oid T shows how to find a subset T of ?T, which is a compact right topological semigroup [I]. The success of the methods in [2] for obtaining properties of-T has prompted us to see how successful they would be in another context. Thus we find (Theorem 4.8) that T cont ains copies of free semigroups on 2? generators, is an immediate consequence of the stronger resu...
متن کاملRings with Many Idempotents
We introduce a new stable range condition and investigate the structures of rings with many idempotents. These are also generalizations of corresponding results of J. Stock and H. P. Yu.
متن کاملPeriodic Homotopy and Conjugacy Idempotents
A self-map f on the CW complex Z is a periodic homotopy idempotent if for some r 0 and p > 0 the iterates fr and fr+p are homotopic. Geoghegan and Nicas defined the rotation index RI(f) of such a map. They proved that for r = p = 1, the homotopy idempotent f splits if and only if RI(f) = 1, while for r = 0, the index RI(f) divides p2. We extend this to arbitrary p and r, and generalize various ...
متن کاملThreads without Idempotents
If a thread S has no idempotents and if S2 = S, then S is iseomorphic with the real interval (0, 1) under ordinary multiplication [2, Corollary 5.6]. Although the result is not nearly as pleasing as the special case just quoted, we shall give here a description of any thread without idempotents. Recall from [l] that a thread is a connected topological semigroup in which the topology is that ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Semigroup Forum
سال: 2021
ISSN: ['0037-1912', '1432-2137']
DOI: https://doi.org/10.1007/s00233-021-10195-w